Hero image

524Uploads

219k+Views

118k+Downloads

FIRST LEGO League Discover poster
IETEducationIETEducation

FIRST LEGO League Discover poster

(0)
Primary classroom poster summarising the FIRST LEGO League Discovery programme. Download this single poster or order a full set of posters for free from the IET Education website.
FIRST LEGO League Explore poster
IETEducationIETEducation

FIRST LEGO League Explore poster

(0)
Primary classroom poster summarising the FIRST LEGO League Explore programme. Download the single poster or order a full set of posters for free from the IET Education website.
Exploded views poster
IETEducationIETEducation

Exploded views poster

(1)
Primary classroom poster giving a closer look at exploded views and how you can draw them for yourself. Download the single poster or order a full set of posters for free form the IET Education website.
Engineering all around us poster
IETEducationIETEducation

Engineering all around us poster

(0)
Primary classroom poster giving a closer look at some of the applications of engineering in our everyday lives. Download the single poster or order a full set of posters for free from the IET Education website.
Electrical safety outdoors poster
IETEducationIETEducation

Electrical safety outdoors poster

(0)
Primary classroom poster showing useful rules to observe when using electricity both in and outside the home. Download the single poster or order a full set of posters from the IET Education website.
Electrical safety indoors poster
IETEducationIETEducation

Electrical safety indoors poster

(1)
Primary classroom poster showing useful rules to observe when using electricity in the home. Download the single poster or order a full set of posters for free from the IET Education website.
James Webb Space Telescope - DIY Faraday Challenge Day
IETEducationIETEducation

James Webb Space Telescope - DIY Faraday Challenge Day

(0)
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own Faraday Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths together in an engaging way. The James Webb Space Telescope challenge is based on the Faraday Challenge of the same name from our 2018/19 season of Faraday Challenge Days. Students are given an engineering brief from Tim Peake (found in the student booklet) where he invites the students to assist the engineering mission of the James Webb Space Telescope team. They will need to demonstrate that they have the engineering skills required to engineer and construct a working prototype of their design and pitch their products to the judges. Designed for six teams of six students (36 students in total) aged 12-13 years (year 8 England, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet. Can your students help make a difference as a Faraday James Webb Space Telescope engineer?
Seesaw scales
IETEducationIETEducation

Seesaw scales

(0)
Understanding levers and forces This STEM activity aims to develop children’s understanding of levers, specifically the seesaw class lever, one of the simplest forms of machine used to change the magnitude or direction of a force. Making a small seesaw model is a fun-filled way to introduce children to the concepts of levers and forces. By making simple levers, learners will grasp how the effort applied to a lever affects the load. This hands-on project not only sparks their curiosity but also encourages active learning. We’ve created this seesaw scale activity to support the teaching of key topics within design and technology (D&T), maths, and science as part of the primary national curriculum at key stage 2 (KS2). You can use it as a one-off activity or link it with a measurement activity in food technology. Activity: Making the lever Learners will make a simple lever assembly from a binder clip, ruler, two paper cups and sticky tape. Children will also be asked to use a lever to work out the force required to move a load. Learners will compare results and explain their findings. Depending on available resources, this activity could be carried out individually or in small teams. Tools/supplies needed: Rulers Large binder clips Paper cups Sticky tape Weights such as steel nuts, small weights from science or marbles The engineering context Engineers use their understanding of how the effort applied to a lever affects the load in designing a wide range of products. From weighing scales to control pedals in cars, nutcrackers, wheelbarrows, bottle openers, and scissors, levers find their application across various industries. By understanding the seesaw lever class, learners will gain a fundamental insight into the principles that govern these everyday objects. Suggested learning outcomes Through this activity, learners will gain the ability to identify the parts of a lever and understand how the effort applied to a lever affects the load. They’ll also understand the principle of balance in a seesaw lever and how distance from the fulcrum impacts the effort needed to move a load. This will equip them with the foundational knowledge about levers, a key component in KS2 science, and provide a practical context for understanding mathematical concepts like multiplication and equality. Download our activity sheet and other teaching resources for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so that you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Please do share your highlights with us @IETeducation
Shadow puppet experiment
IETEducationIETEducation

Shadow puppet experiment

(0)
This fun STEM resource focuses on making shadow puppets while nurturing an understanding of the relationship between light and shadow. We’ve created this shadow puppet experiment to support the teaching of key topics within design and technology (D&T) and science as part of the primary national curriculum at key stage 2 (KS2). This resource focuses on making shadow puppets and developing supporting knowledge about the relationship between light and shadow. This could be used as a one-off activity in D&T or science or linked with the IET primary activity ‘How does the light from a torch change with distance?’, which involves measuring how the distribution of light varies with distance from the light source. It could also be used in conjunction with learning in literacy – for example, creating puppets to perform a story being studied. Activity: Making shadow puppets Learners will make a shadow puppet using card, craft sticks and sticky tape. This not only makes learning about shadow puppets fun but also fosters creativity and storytelling skills among learners at the KS2 level. Tools/supplies needed: Card (photocopies of handouts, if used) Masking tape Craft sticks Tracing paper (for screen) Large boxes (for extension activity) Scissors Torches The Engineering Context Engineers often have to consider how light behaves when designing products for practical applications. For instance, the positioning of windows and artificial lighting in buildings, or the power and placement of lights and mirrors in vehicles, are all influenced by an understanding of light and shadow. This activity will give learners an insight into these considerations. Suggested learning outcomes Light is a type of electromagnetic radiation. Visible light is the range of the electromagnetic spectrum that can be seen with a human eye. Light’s brightness, or intensity, is typically measured as the power per unit area. Any object that blocks the path of light causes a shadow. This activity therefore offers a blend of scientific learning, practical skills, and creative expression, making it a comprehensive educational experience. Specifically, children will learn that blocking the path of light causes a shadow, and they’ll be able to use scissors to make a graphic product. Download our activity sheet and other teaching resources All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Please do share your highlights with us @IETeducation.
Make a Robinson Anemometer
IETEducationIETEducation

Make a Robinson Anemometer

(1)
Making a device to measure wind speed In this science project, students will construct a Robinson Anemometer using common household materials. Once built, students can use it to measure wind speed either inside with domestic items or outside with the natural environment. This activity can serve as a stand-alone project or as a component of a broader unit on weather or measurement. It is intended for upper Key Stage 2 learners (years 5 and 6). This resource is part of a collection of free STEM resources created to aid in the teaching of the primary national curriculum, especially in the areas of science and design and technology. The purpose of this activity is to aid in teaching key concepts through the construction of a homemade anemometer. Parts and components required: Polystyrene balls, 25 - 40 mm diameter, 1 per anemometer Wood/bamboo skewers, 3 per anemometer Putty (such as Blutack or Whitetak) OR modelling clay (such as clay, Plasticine or Playdough). EITHER 6 paper cups OR 4 paper cups and a plastic water bottle with a sports cap Sticky tape Tools and equipment required: Fans, hair-dryers or other sources of moving air Stop watches Commercial anemometer (for extension activity) The Robinson Anemometer The Robinson Anemometer is a type of cup anemometer, an instrument used for measuring wind speed. It was invented by John Thomas Romney Robinson in 1846 and is named after him. The Robinson Anemometer consists of four hemispherical cups mounted at the end of horizontal arms, which are attached to a vertical shaft. As the cups rotate due to the force of the wind, the speed of the wind can be calculated based on the rate of rotation. The Robinson Anemometer is still widely used today and is considered one of the most accurate and reliable types of anemometers. The engineering context Engineers need to be able to measure the forces that will act on the things they need to design. They need to understand how these measurements are made so that they can be confident that their designs will meet the requirements in practical situations. Suggested learning outcomes By the end of this activity students will have an understanding of what is meant by wind, they will be able to construct a simple mechanical device and they will be able to understand that the linear movement of air can be measured by the rotation of an anemometer. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make a homemade musical instrument
IETEducationIETEducation

Make a homemade musical instrument

(1)
Learn how to make a homemade single stringed musical instrument in this fun STEM activity for kids This fun STEM activity for kids will show you how to make a homemade musical instrument from card and can be done at home or at school! This is one of a set of free resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on the construction, investigation and testing of a single stringed instrument. In this activity learners will construct a card model of a single stringed instrument. They will test how it works, demonstrating how the tension of the string affects the pitch of the notes produced. This could be used as a one-off activity or as part of a wider unit of work focusing on how sound is produced and heard by the human ear. It could also be used to develop modelling and prototyping skills. Download our activity sheet below for a step-by-step guide on how to construct your homemade instrument. As an optional extension students could evaluate the model they have built and suggest improvements that could be made to it. They could also make a manufactured prototype of a single stringed instrument using woods, metals and/or plastics. Alternatively, they could investigate and research the use of pivots and how these work in mechanical systems. This activity will take approximately 40 – 60 minutes. Tools/resources required Parts and materials: Pieces of card Hollow card boxes Paper fasteners Elastic bands Tools and equipment: Scissors Hole punches The engineering context Engineers need to be able to understand how sound is produced and heard by the human ear. This knowledge could be used when designing musical instruments or products that produce different sounds, such as games for children. Suggested learning outcomes By the end of this activity students will have an understanding of how sound is produced from a stringed instrument. They will also have an understanding of how changing the tightness/tension of a string alters the pitch of the notes produced. Finally, they will be able to construct and test a model of a single stringed instrument. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation https://education.theiet.org/primary/teaching-resources/make-a-homemade-musical-instrument/
Section drawings
IETEducationIETEducation

Section drawings

(0)
How to Draw a Section Drawing This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within design and technology and maths. This resource focusses on creating a section drawing of a product. Different types of drawing are used to communicate different types of information. Section drawings are a type of 2D drawing that show the parts or features inside a product. In effect, a section drawing shows the view as if the product has been cut in half – most typically this is along the longer dimension of the product, such as its length. Section drawings are used to show what the inside of a product looks like and how the parts of a product fit together. Producing a section drawing develops drawing skills, whilst simultaneously allowing concepts such as dimensions, proportion and scale to be introduced in a practical context. In this activity learners will produce a section drawing of a safety helmet worn by cyclists, working in proportion and ideally to scale. This could be used as a one-off activity or linked to other D&T activities, such as product analysis or exploded drawing (especially when using the extension activity, creating a section drawing of a pen). It could also be used in conjunction with the IET Faraday Primary Poster – Section Views. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
How to Make a Magnetic Newton’s Cradle
IETEducationIETEducation

How to Make a Magnetic Newton’s Cradle

(0)
Making a cradle using magnets that repel each other Newton’s cradle uses swinging spheres to show how the conservation of momentum and the conservation of energy works. The device was named after Sir Isaac Newton and designed by French scientist Edme Mariotte. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on producing a magnetic Newton’s cradle that uses magnets which repel each other instead of the usual metal spheres. This is a great way for students to learn all about magnets and could be used as a one-off activity or as part of a wider unit of work focusing on magnets and magnetism. It can also be used in conjunction with other IET Education resources, developed alongside the School of Engineering at Cardiff University. This activity will take approximately 65-90 minutes. Tools/resources required Circular magnets with holes in the middle (with N and S poles) 150 mm lengths of dowel 75 mm lengths dowel 100 – 120 mm long pieces of string (6 per unit being built) Masking tape Example of a ‘regular’ Newton’s cradle. Scissors Hot glue guns, if appropriate Magnetic forces Magnets are made from materials such as iron and nickel and they have a north pole and a south pole. When the north pole of a magnet is placed near the south pole of another magnet, they will attract each other. When two poles that are the same are placed near each other, they will repel each other. For example, north to north and south to south. The engineering context Engineers need to know the properties of magnets, which materials are magnetic and which materials are non-magnetic. This knowledge could be used when identifying and creating potential solutions to future engineering problems. For example, when developing green transport solutions. Suggested learning outcomes By the end of this activity students will be able to describe magnets as having two poles – north and south, they will understand that magnets either attract or repel each other and they will be able to make and test a ‘magnetic’ Newton’s cradle. Download the free How to make a magnetic Newton’s cradle activity sheet! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Magnetic forces STEM activity
IETEducationIETEducation

Magnetic forces STEM activity

(0)
Creating designs for novel products using magnets In this fun STEM activity students will learn about how magnets can be used to attract or repel each other. They will use their knowledge of how they work to identify and sketch design ideas for two novel products that make use of magnets and magnetism. This resource is a great way for KS2 students to learn all about magnets and could be used as a one-off activity or as part of a wider unit of work focusing on magnets and magnetism. It can also be used in conjunction with other IET Education resources, developed alongside the School of Engineering at Cardiff University. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on identifying and sketching design ideas for innovative products that make use of magnets. This activity could be completed as individuals or in small groups. This activity will take approximately 40-60 minutes to complete. Tools/resources required Bar magnets with N and S poles marked Modelling materials (for extension activity) Pencils, pens and sketching equipment CAD software (for extension activity) Modelling tools and equipment (for extension activity) Magnetic forces Magnets are made from materials such as iron and nickel and they have a north pole and a south pole. When the north pole of a magnet is placed near the south pole of another magnet, they will attract each other. When two poles that are the same are placed near each other, they will repel each other. For example, north to north and south to south. The engineering context Engineers need to know the properties of magnets, which materials are magnetic and which materials are non-magnetic. This knowledge could be used when identifying and creating potential solutions to future engineering problems. For example, when developing green transport solutions. Suggested learning outcomes By the end of this activity students will be able to describe magnets as having two poles, they will understand how magnets attract or repel each other and they will be able to identify and design ideas for products that make use of magnets. Download the free Magnetic forces STEM activity sheet! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How do magnets work?
IETEducationIETEducation

How do magnets work?

(0)
Investigating everyday products to see if they are magnetic In this activity learners will predict whether they think different products are magnetic based on the material that each product is made from. They will then test their theory by using magnets, to see whether or not each product is attracted to a magnet. This resource is a great way for KS2 students to learn all about magnets and could be used as a one-off activity or as part of a wider unit of work focusing on magnets and magnetism. It can also be used in conjunction with the IET Education ‘Magnet Madness’ resource, developed alongside the School of Engineering at Cardiff University. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on identifying whether everyday products are made from magnetic materials. This activity could be completed as individuals, in pairs or in small groups. Learners could be given all the products at once to test, or the teacher may wish to lead through one product at a time, recapping the key tasks and questions for them to consider as they go through. Discussion topics and key questions for learners can be found on the presentation below and detailed instructions on how to complete the activity can be found on the activity sheet. This activity will take approximately 40-60 minutes to complete. Tools/resources required Magnets Plastic drinks cups 2 pence coins Steel door keys Aluminium drinks cans Steel paper clips Wooden toy cars The engineering context Engineers need to know the properties of magnets, which materials are magnetic and which materials are non-magnetic. This knowledge could be used when identifying and creating potential solutions to future engineering problems. Suggested learning outcomes By the end of this exercise students will know which materials are magnetic and which are not, they will be able to give examples of magnetic and non-magnetic materials and they will be able to test products to see whether they are made from magnetic materials. Download the free How do magnets work? activity sheet! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Magnetic maze STEM challenge
IETEducationIETEducation

Magnetic maze STEM challenge

(0)
Making a maze game from a bottle and a magnet Learners will draw a maze layout on a plastic bottle and use a magnet to guide objects, such as a 1p coin, around the maze. This is a fun STEM challenge that will teach students about how magnets attract certain materials and will show them how to apply this knowledge in an engaging and practical way. This resource could be used as a one-off activity or as part of a wider unit of work focussing on magnets and magnetism. It can also be used in conjunction with other IET Education resources, developed alongside the School of Engineering at Cardiff University. Activity: Magnetic maze STEM challenge This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on developing understanding of magnetic materials by producing a maze game. This activity could be completed as individuals or in small groups depending on the equipment that is available. As an optional extension students could replace the coin with a ball bearing, a paper clip, a plastic coin and a small piece of wood. Which ones work well and which do not? Students could also draw different maze layouts and use different sized bottles to create a range of puzzle products! Alternatively, students could compete with their friends to see who can complete the maze the fastest by timing themselves with stopwatches. Tools/resources required Pre-made exemplar Magnets 1 pence coins (post 1992) Plastic drinks bottles Paper clips (for extension activity) Ball bearings (for extension activity) Plastic coins (for extension activity) Small pieces of wood (for extension activity) Different coloured marker pens Stopwatches (for extension activity) The engineering context Engineers need to know the properties of magnets, which materials are magnetic and which materials are non-magnetic. This knowledge could be used when identifying and creating potential solutions to future engineering problems. Suggested learning outcomes By the end of this exercise students will have an understanding of what makes a material magnetic, they will be able to give examples of magnetic and non-magnetic materials and they will be able to make a maze game using a bottle and a magnet. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Investigating lamp brightness
IETEducationIETEducation

Investigating lamp brightness

(0)
Investigate how different battery voltages affect their brightness is key to understanding how series electrical circuits work. In this fun exercise for KS2, students will construct three separate lamp circuits: one powered by a single AA battery, one powered by two AA batteries and one powered by three AA batteries. Students will learn about current, voltage and how simple series circuits work. Activity: Investigating lamp brightness This resource is part of a collection of free STEM resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on the investigation of how different supply voltages affect the brightness of a lamp. This activity could be used as a one-off activity or as part of a wider unit of work focusing on electricity and electrical circuits. It can be completed as individuals or in small groups, dependent on the components available. How long will this activity take? This activity will take approximately 45-75 minutes to complete. Parts and components required: Red and black crocodile clips 1.5 V AA batteries and holders with wires 4.5 V lamps and holders The engineering context Engineers need to be able to understand how basic electrical circuits work. This includes current flow and how supply voltage affects the brightness of lamps in simple series circuits. This knowledge could be used when investigating, designing, or making electrical and electronic circuits in the future. Suggested learning outcomes By the end of this activity students will have an understanding of what is meant by the terms current and voltage, they will have an understanding of why the brightness of a lamp changes with the number and voltage of the batteries that it is connected to, and they will be able to construct simple series circuits using batteries, lamps and crocodile clips. Download the free Investigating lamp brightness activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Using fruit batteries to produce electricity
IETEducationIETEducation

Using fruit batteries to produce electricity

(0)
Using lemons and limes to power an LED In this fun STEM activity learners will construct a series circuit consisting of four fruit batteries and an LED. They will learn about the main parts of a battery and how fruit can be used to provide enough voltage to light an LED. They will also investigate how the brightness of the LED changes depending on the number of fruit batteries used in the circuit. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on the use of fruit to power a light emitting diode (LED). This could be used as a one-off activity or as part of a wider unit of work focusing on electricity and electrical circuits. This activity could be completed as individuals or in small groups, dependent on the components and tools available. Lemons or limes can be used, or a mixture of both. Each lemon or lime should provide between approximately 0.7 and 0.9 V. This can be tested by using a multimeter if required. The total voltage of the series circuit can be calculated by adding up the voltage of each individual battery. This arrangement would produce approximately 2.8 – 3.6 V depending on the voltage of each individual piece of fruit. How long will this activity take? Approximately 40-65 minutes to complete. Tools/resources required Red and black crocodile clips Lemons and/or limes Zinc coated nails 50 mm lengths of 1 mm or 2 mm diameter copper wire Low voltage hi-bright LEDs Wire cutters The engineering context Engineers need to be able to understand how basic electrical circuits work. This includes the main parts of a battery and how they work to power electrical output devices. This knowledge could be used when investigating, designing or making electrical and electronic circuits in the future. Suggested learning outcomes By the end of this activity students will understand how fruit can be used to make batteries that can power electrical output devices, they will know the main parts that make up a battery and they will be able to construct a series fruit battery circuit that lights an LED. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation